Modeling and Simulation of Village Fund Allocation Distribution Using Regional Cluster-Based System Logic Approach
Keywords:
Village Fund, K-Means Clustering, System Logic, Budget Simulation, Affirmative PolicyAbstract
The inequitable distribution of Village Funds remains a critical issue in Indonesia's fiscal decentralization, often exacerbating regional development disparities due to static and uniform allocation mechanisms. This study aims to develop a budget distribution simulation model that integrates Data Mining with System Logic to formulate a more equitable allocation strategy. Using a quantitative approach with a case study in Majalengka Regency, the research methodology involves two stages: first, mapping regional characteristics using the K-Means Clustering algorithm based on historical data (2019-2022), and second, applying a Scenario-Based System Simulation using a Weighted Growth Model. The system logic applies an affirmative policy where underdeveloped regions (Low Cluster) receive a higher growth weight (8%) compared to developed regions (High Cluster, 2%). The simulation results demonstrate that the proposed model successfully reduces fiscal disparity by significantly increasing the nominal allocation for the Low Cluster without burdening the total regional budget, which only increased by 4.4%. This study concludes that the integration of clustering and rule-based simulation provides a scientifically accountable Decision Support System (DSS) for local governments to perform "What-If Analysis" in planning fair and targeted fiscal policies.
References
[1] I. Nazila, G. W. Nugroho, and R. Nurmilah, “Analisis Pengelolaan Dana Desa untuk Pembangunan Infrastruktur dan Pemberdayaan Masyarakat di Desa Pasir Panjang dan Desa Ciracap,” vol. 4, 2025, doi: 10.30640/jumma45.v4i2.5102.
[2] Y. Filki, “Algoritma K-Means Clustering dalam Memprediksi Penerima Bantuan Langsung Tunai (BLT) Dana Desa,” J. Inform. Ekon. Bisnis, vol. 4, pp. 166–171, 2022, doi: 10.37034/infeb.v4i4.166.
[3] asrul, “DANA DESA TERHADAP KESEJAHTERAAN MASYARAKAT,” vol. 05.
[4] A. S. Nugroho, “Penerapan Metode K-Means Clustering Untuk Penentuan Eligibilitas Bantuan Langsung Tunai Berbasis Mobile,” vol. 5, no. 1, pp. 25–36, 2024, doi: 10.51519/journalita.v5i1.510.
[5] S. Hsiang et al., “The effect of large-scale anti-contagion policies on the COVID-19 pandemic,” Nature, vol. 584, no. 7820, pp. 262–267, 2020, doi: 10.1038/s41586-020-2404-8.
[6] S. Penunjang, K. Pemilihan, P. Terbaik, and D. I. D. Batusumur, “Penerapan metode”.
[7] M. I. Zuhendra, R. Hidayat, and H. Hendrawaty, “Penerapan Data Mining Untuk Klasterisasi Tingkat Kemiskinan Berdasarkan Data Terpadu Kesejahteraan Sosial (Dtks),” SKANIKA Sist. Komput. dan Tek. Inform., vol. 7, no. 1, pp. 32–41, 2024, doi: 10.36080/skanika.v7i1.3149.
[8] Fitriani, “PENERAPAN ALGORITMA K-MEANS DALAM,” no. Ks 1, 2021.
[9] Y. Sopyan, A. D. Lesmana, and C. Juliane, “Analisis Algoritma K-Means dan Davies Bouldin Index dalam Mencari Cluster Terbaik Kasus Perceraian di Kabupaten Kuningan,” Build. Informatics, Technol. Sci., vol. 4, no. 3, Dec. 2022, doi: 10.47065/bits.v4i3.2697.
[10] E. Yolanda, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Data Pasien Rehabilitasi Narkoba,” vol. 4, no. 1, pp. 182–191, 2023, doi: 10.30865/klik.v4i1.1107.
[11] P. Di and D. Pasawahan, “PENERAPAN ALGORITMA K-MEANS DALAM ANALISIS DATA KEPENDUDUKAN UNTUK OPTIMALISASI,” vol. 13, no. 1, pp. 439–445, 2025.
[12] U. Hayati, “CLUSTERING PENERIMA BANTUAN SOSIAL MENGGUNAKAN ALGORITMA,” vol. 8, no. 1, pp. 574–579, 2024.
[13] B. Daerah and M. Algoritma, “Jurnal JTIK ( Jurnal Teknologi Informasi dan Komunikasi ) Penerapan Data Mining untuk Klasterisasi Data Anggaran,” vol. 9, no. June, pp. 622–630, 2025.
[14] A. Atalan, H. Sahin, and Y. A. Atalan, “Integration of Machine Learning Algorithms and Discrete-Event Simulation for the Cost of Healthcare Resources,” 2022, doi: 10.3390/healthcare10101920.
[15] N. Nugroho, W. Wijiyanto, and A. I. Pradana, “Analisis Persebaran Izin Usaha di Kabupaten Sragen Menggunakan Metode K-Means Clustering,” J. Pendidik. dan Teknol. Indones., vol. 5, no. 1, pp. 143–153, 2025, doi: 10.52436/1.jpti.608.
[16] M. D. Salman et al., “Perbandingan Kinerja Algoritma Clustering K-Means dan K-Medoids dalam Pengelompokan Sekolah di Provinsi Riau Berdasarkan Ketersediaan Sarana dan Prasarana: Comparison of K-Means and K-Medoids Clustering Algorithm Performance in Grouping Schools in Riau Pr,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 5, no. 3, pp. 797–806, 2025, doi: 10.57152/malcom.v5i3.1950.
[17] M. Arfan et al., “Sistem Penunjang Keputusan Penentuan Prioritas Pembangunan Desa Dengan Metode AHP-TOPSIS,” Diffus. Syst. Inf. Technol., vol. 3, no. 1, pp. 92–101, 2023.
[18] Z. Vikki, “Penerapan Metode Weighted Product Melalui Pendekatan Logika Fuzzy Pada Kasus Pemilihan Ketua Osim Man 7 Bireuen,” J. TIKA, vol. 7, no. 2, pp. 139–148, 2022, doi: 10.51179/tika.v7i2.1265.
[19] T. T. A. Risky, N. Faiza, M. F. H. Hasibuan, and M. S. R. Nasution, “Modeling and Simulation of Indoor Temperature Dynamics Using Random Forest and Multi-Layer Perceptron Methods”, jitcos, vol. 1, no. 2, pp. 64–73, Dec. 2025, doi: 10.65230/jitcos.v1i2.39.
[20] Muhammad Alfariz Rasyid, S. M. Hutagalung, and Muhammad Fajar Dermawan, “Traffic Congestion Modeling and Simulation in Front of the University of North Sumatra (USU) Campus Using an Agent-Based Modeling Approach”, jitcos, vol. 1, no. 2, pp. 86–100, Dec. 2025, doi: 10.65230/jitcos.v1i2.41.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Putri Ramadani, Nur Aisyah Pandia, Seruni Melati (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.